●難點磁場
(★★★★★)已知二次函數y=f(x)在x= 處取得最小值- (t>0),f(1)=0.
(1)求y=f(x)的表達式;
(2)若任意實數x都滿足等式f(x)·g(x)+anx+bn=xn+1[g(x)]為多項式,n∈N*),試用t表示an和bn;
(3)設圓Cn的方程為(x-an)2+(y-bn)2=rn2,圓Cn與Cn+1外切(n=1,2,3,…);{rn}是各項都是正數的等比數列,記Sn為前n個圓的面積之和,求rn、Sn.
難點15 三角函數的圖象和性質
三角函數的圖象和性質是高考的熱點,在復習時要充分運用數形結合的思想,把圖象和性質結合起來.本節(jié)主要幫助考生掌握圖象和性質并會靈活運用.
●難點磁場
(★★★★)已知α、β為銳角,且x(α+β- )>0,試證不等式f(x)= x<2對一切非零實數都成立.
●案例探究
[例1]設z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范圍.
難點16 三角函數式的化簡與求值
三角函數式的化簡和求值是高考考查的重點內容之一.通過本節(jié)的學習使考生掌握化簡和求值問題的解題規(guī)律和途徑,特別是要掌握化簡和求值的一些常規(guī)技巧,以優(yōu)化我們的解題效果,做到事半功倍.
●難點磁場
(★★★★★)已知 <β<α< ,cos(α-β)= ,sin(α+β)=- ,求sin2α的值_________.
難點17 三角形中的三角函數式
三角形中的三角函數關系是歷年高考的重點內容之一,本節(jié)主要幫助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧.
●難點磁場
(★★★★★)已知△ABC的三個內角A、B、C滿足A+C=2B. ,求cos 的值.
難點18 不等式的證明策略
不等式的證明,方法靈活多樣,它可以和很多內容結合.高考解答題中,常滲透不等式證明的內容,純不等式的證明,歷來是高中數學中的一個難點,本難點著重培養(yǎng)考生數學式的變形能力,邏輯思維能力以及分析問題和解決問題的能力.
●難點磁場
(★★★★)已知a>0,b>0,且a+b=1.
求證:
難點19 解不等式
不等式在生產實踐和相關學科的學習中應用廣泛,又是學習高等數學的重要工具,所以不等式是高考數學命題的重點,解不等式的應用非常廣泛,如求函數的定義域、值域,求參數的取值范圍等,高考試題中對于解不等式要求較高,往往與函數概念,特別是二次函數、指數函數、對數函數等有關概念和性質密切聯系,應重視;從歷年高考題目看,關于解不等式的內容年年都有,有的是直接考查解不等式,有的則是間接考查解不等式.
●難點磁場
(★★★★)解關于x的不等式
難點20 不等式的綜合應用
不等式是繼函數與方程之后的又一重點內容之一,作為解決問題的工具,與其他知識綜合運用的特點比較突出.不等式的應用大致可分為兩類:一類是建立不等式求參數的取值范圍或解決一些實際應用問題;另一類是建立函數關系,利用均值不等式求最值問題、本難點提供相關的思想方法,使考生能夠運用不等式的性質、定理和方法解決函數、方程、實際應用等方面的問題.
●難點磁場
(★★★★★)設二次函數f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1、x2滿足0
(1)當x∈[0,x1 時,證明x
所屬頻道:數學
責任編輯:阮老師