距離2013年初中期末考試還有一個(gè)多月的時(shí)間,廣東招生信息網(wǎng)-中考頻道小編為大家整理了期末初二數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)供同學(xué)們參考!
一、四邊形的相關(guān)概念
1、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于 180°;
多邊形的外角和定理:任意多邊形的外角和等于360°。
6、設(shè)多邊形的邊數(shù)為n,則多邊形的對(duì)角線共有 條。從n邊形的一個(gè)頂點(diǎn)出發(fā)能引(n-3)條對(duì)角線,將n邊形分成(n-2)個(gè)三角形。
二、平行四邊形
1、平行四邊形的定義
兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質(zhì)
(1)平行四邊形的對(duì)邊平行且相等。
(2)平行四邊形相鄰的角互補(bǔ),對(duì)角相等
(3)平行四邊形的對(duì)角線互相平分。
(4)平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是對(duì)角線的交點(diǎn)。
常用點(diǎn):(1)若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段的中點(diǎn)是對(duì)角線的交點(diǎn),并且這條直線二等分此平行四邊形的面積。
(2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
(1)定義:兩組對(duì)邊分別平行的四邊形是平行四邊形
(2)定理1:兩組對(duì)角分別相等的四邊形是平行四邊形
(3)定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形
(4)定理3:對(duì)角線互相平分的四邊形是平行四邊形
(5)定理4:一組對(duì)邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離。
平行線間的距離處處相等。
5、平行四邊形的面積
S平行四邊形=底邊長(zhǎng)×高=ah
三、矩形
1、矩形的定義
有一個(gè)角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
(1)矩形的對(duì)邊平行且相等
(2)矩形的四個(gè)角都是直角
(3)矩形的對(duì)角線相等且互相平分
(4)矩形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn)(對(duì)稱中心到矩形四個(gè)頂點(diǎn)的距離相等);對(duì)稱軸有兩條,是對(duì)邊中點(diǎn)連線所在的直線。
3、矩形的判定
(1)定義:有一個(gè)角是直角的平行四邊形是矩形
(2)定理1:有三個(gè)角是直角的四邊形是矩形
(3)定理2:對(duì)角線相等的平行四邊形是矩形
4、矩形的面積
S矩形=長(zhǎng)×寬=ab
四、菱形
1、菱形的定義
有一組鄰邊相等的平行四邊形叫做菱形
2、菱形的性質(zhì)
(1)菱形的四條邊相等,對(duì)邊平行
(2)菱形的相鄰的角互補(bǔ),對(duì)角相等
(3)菱形的對(duì)角線互相垂直平分,并且每一條對(duì)角線平分一組對(duì)角
(4)菱形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn)(對(duì)稱中心到菱形四條邊的距離相等);對(duì)稱軸有兩條,是對(duì)角線所在的直線。
3、菱形的判定
(1)定義:有一組鄰邊相等的平行四邊形是菱形
(2)定理1:四邊都相等的四邊形是菱形
(3)定理2:對(duì)角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長(zhǎng)×高=兩條對(duì)角線乘積的一半
五、正方形 (3~10分)
1、正方形的定義
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)正方形四條邊都相等,對(duì)邊平行
(2)正方形的四個(gè)角都是直角
(3)正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角
(4)正方形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn);對(duì)稱軸有四條,是對(duì)角線所在的直線和對(duì)邊中點(diǎn)連線所在的直線。
3、正方形的判定
判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:
先證它是矩形,再證它是菱形。
先證它是菱形,再證它是矩形。
4、正方形的面積
設(shè)正方形邊長(zhǎng)為a,對(duì)角線長(zhǎng)為b
S正方形=a*a
六、梯形
(一) 1、梯形的相關(guān)概念
一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形。
梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長(zhǎng)的底叫做下底。
梯形中不平行的兩邊叫做梯形的腰。
梯形的兩底的距離叫做梯形的高。
2、梯形的判定
(1)定義:一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形是梯形。
(2)一組對(duì)邊平行且不相等的四邊形是梯形。
(二)直角梯形的定義:一腰垂直于底的梯形叫做直角梯形。
(三)等腰梯形
1、等腰梯形的定義
兩腰相等的梯形叫做等腰梯形。
2、等腰梯形的性質(zhì)
(1)等腰梯形的兩腰相等,兩底平行。
(2)等腰梯形同一底上的兩個(gè)角相等,同一腰上的兩個(gè)角互補(bǔ)。
(3)等腰梯形的對(duì)角線相等。
(4)等腰梯形是軸對(duì)稱圖形,它只有一條對(duì)稱軸,即兩底的垂直平分線。
3、等腰梯形的判定
(1)定義:兩腰相等的梯形是等腰梯形
(2)定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形
(3)對(duì)角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)
七、有關(guān)中點(diǎn)四邊形問(wèn)題的知識(shí)點(diǎn):
(1)順次連接任意四邊形的四邊中點(diǎn)所得的四邊形是平行四邊形;
(2)順次連接矩形的四邊中點(diǎn)所得的四邊形是菱形;
(3)順次連接菱形的四邊中點(diǎn)所得的四邊形是矩形;
(4)順次連接等腰梯形的四邊中點(diǎn)所得的四邊形是菱形;
(5)順次連接對(duì)角線相等的四邊形四邊中點(diǎn)所得的四邊形是菱形;
(6)順次連接對(duì)角線互相垂直的四邊形四邊中點(diǎn)所得的四邊形是矩形;
(7)順次連接對(duì)角線互相垂直且相等的四邊形四邊中點(diǎn)所得的四邊形是正方形;
八、中心對(duì)稱圖形
1、定義
在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心。
2、性質(zhì)
(1)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。
(2)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分。
(3)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱。
九、四邊形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的關(guān)系圖:
所屬頻道:數(shù)學(xué)
責(zé)任編輯: