2012年數(shù)學(xué)備考已經(jīng)進(jìn)入了沖刺階段,在這個(gè)階段要重視歷年的考研數(shù)學(xué)?嫉闹R(shí)點(diǎn),這樣備考才更具有目的性,F(xiàn)在考研專家組就為大家匯總下歷年考研數(shù)學(xué)常考的知識(shí)點(diǎn):
1、兩個(gè)重要極限,未定式的極限、等價(jià)無窮小代換
這些小的知識(shí)點(diǎn)在歷年的考察中都比較高。而透過我們分析,假如考極限的話,主要考的是洛必達(dá)法則加等價(jià)無窮小代換,特別針對數(shù)三的同學(xué),這兒可能出大題。
2、處理連續(xù)性,可導(dǎo)性和可微性的關(guān)系
要求掌握各種函數(shù)的求導(dǎo)方法。比如隱函數(shù)求導(dǎo),參數(shù)方程求導(dǎo)等等這一類的,還有注意一元函數(shù)的應(yīng)用問題,這也是歷年的一個(gè)重點(diǎn)。數(shù)三的同學(xué)這兒結(jié)合經(jīng)濟(jì)類的一些試題進(jìn)行考察。
3、微分方程:一是一元線性微分方程,第二是二階常系數(shù)齊次/非齊次線性微分方程
對第一部分,考生需要掌握九種小類型,針對每一種小類型有不同的解題方式,針對每個(gè)不同的方程,套用不同的公式就行了。對于二階常系數(shù)線性微分方程大家一定要理解解的結(jié)構(gòu)。另一塊對于非齊次的方程來說,考生要注意它和特征方程的聯(lián)系,有齊次為方程可以求它的通解,當(dāng)然給出的通解大家也要寫出它的特征方程,這個(gè)變化是咱們這幾年的一個(gè)趨勢。這一類問題就是逆問題。